Rapid CO2 Absorption with Mineralizstion of CO2 by OLIVINE. 2016/8/6

80%CO2 cut with **mass absorption** by ocean and land would take more than 60 years long, while Olivine Engineering in global reservoir could have potential of **rapid absorption**.

[0]: Distribution of Carbon on Earth.

Almost GLOBAL CO2 has been being stably confined within rocks.

	Amount (x 10^{15} kg)	Relative amount (%)
Limestones (CaCO ₃)	35.000	46.6 %
Dolomites	25.000	33.3 %
Sedimentary carbon	15.000	20 %
Recoverable fossil fuels	4	0.005
Oceanic CO ₂	42	0.056
Atmospheric CO ₂	3	0.004
Biomass	0.056	0.0007
Anthropogenic emission	0.03 /year	
Input from Earth's interior	0.0025/year	

Table 1: Distribution of carbon on Earth. Modified after Dunsmore (1992)

http://www.innovationconcepts.eu/res/literatuurSchuiling/olivineagainstclimatechange23.pdf

[1]:Chemical Reactions of Mineralisation of CO2 by OLIVINE.

http://www.carbonorder.com/atmospheric-c02-reduction

Carbonation is a natural process where CO2 reacts with different minerals forming solid precipitates leading to the weathering of the rocks.

Metal oxide + CO2 \rightarrow Metal carbonate + Heat	(1)
$Mg_2SiO_4 + 2CO_2 + 2H_2O \rightarrow 2MgCO_3 + H_4SiO_4$	(2)
(24x2+28+16x4):2(12+16x2)=140:88	

$Mg^{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2} + 2H_{2}O \rightarrow 3MgCO_{3} + 2H_{4}SiO_{4}$	(3)
---	-----

- $Fe_2SiO_4 + 2CO_2 + 2H_2O \rightarrow 2FeCO_3 + H_4SiO_4$ (4)
- $CaSiO_3 + CO_2 + 2H_2O \rightarrow CaCO_3 + H_4SiO_4$ (5)

Due to the abundance of silicates around the world, the storage capacity of mineral carbonation is very large (>10,000 GtC). Note atmospheric carbon is 850GtC(400ppm) at now. \Rightarrow :OMAN: 70,000km³ of 30% olivine; sufficient to mineralise centuries of global CO2 emissions. M=70000(1000m)³x0.3x3.5tion/m³=7.35x10¹²ton. <olivine density~3.5ton/m³>. http://www.cmclinnovations.com/wp-content/uploads/2013/06/CCC Biomass-Power-CCS 24-5-13.pdf

Olivine weathering to capture CO2 and counter climate change

<u>http://arctic-news.blogspot.jp/2016/07/olivine-weathering-to-capture-co2-and-counter-climate-change.html</u> Only process that has always removed the excess of CO_2 emitted by volcanoes since the origin of the Earth is barely considered. It is the weathering of minerals by which almost all the CO_2 that was emitted during the past by volcanoes was transported as bicarbonate solutions to the oceans where it was sustainably stored as carbonate rocks (limestones and dolomites).

"Mineral Carbonation:a stand-alone option for Biomass CCS"

http://www.cmclinnovations.com/wp-content/uploads/2013/06/CCC_Biomass-Power-CCS_24-5-13.pdf

[2]: Rapid Accomplishing Stable Climate by Olivine Engineering. Global Carbon Budget 2015.

emitter		absober		
Man-made=33.0±1.8 GtCO2/yr	91%	Ocean=9.5±1.8 GtCO2/yr	26%	
Natural =3.4±1.8 GtCO2/yr	9%	Land =10.9±2.9 GtCO2/yr	30%	
		Atmosphere=16.0±0.4GtCO2/yr	44%	
http://www.globalcarbonproject.org/carbonbudget/15/presentation.htm				
http://www.globalcarbonproject.org/carbonbudget/15/files/GCP_budget_2015_v1.02.pdf				
(1)How much each of us(7billion) emitt CO2 /year ?'.				
33x10 ⁹ t/7x10 ⁹ p=4.7t/p.year= <mark>12.9Kg/p.day</mark> .				
(2)How much Olivier need to absrob 33Gt CO2/year ?'.				
Chemical ratio of CO2 and Olivine \rightarrow [1]:(2)				
<mark>88</mark> : <mark>140</mark> =33Gt:53Gt.→53Gt/7x10 ⁹ x365=21Kg/p.day.				
☞: Thus if you absorb CO2 by above olivine, you could cancell CO2 emitting. You must mill				
21Kg olievine rock/day,it is NOT IMPOSSIBLE if you get olivine and hammer.				
Massive DAC plants (direct air capture CO2)could those by industrial ways.				
http://www.carbonorder.com/atmospheric-c02-reduction				
*If no hazardous, milling & spreading mass olivine could be done by dynamite in mine ?.				
At now, author do not well know about details of olivine engineering due to his indulgence.				
(3)Both 80% CO2 cut and mass absorption by olivine are possible, which enable rapid				
decrease of atmospheric CO2 by ${3.4+0.8x33-9.5-10.9-33} = -23.6$ GtCO2/year.				
$-23.6GtCO2/year = -\frac{3ppm/y}{2}.$				

*7.8 Gt **CO2** per ppm

(4)Stable concentration 350ppm? could be accomplished by (400-350)/3=17years !!.
Following are Global Temperature Change simulations by CO2 Sink Scenario.
http://www.777true.net/Accounting-principle-verify-reconstruction-the-Past-Climate-Records.pdf
Above all,below 0.2℃ rise would be best for evading possible dangerous climate disasters.
This is temperature change by 3ppm sink both by 80%cut and olivine engineering.

